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Abstract

In this research, we propose an analytical method to control the period and the clarity of the beat in a slightly
asymmetric ring. The concept of a simple equivalent ring is applied, i.e. a slightly asymmetric ring with known modal
data is modeled as an equivalent circular ring with one or multiple point masses, which has the same modal data as that
of the original ring. By using the equivalent ring model, the optimal beat tuning is achieved by adding a 2nd point mass
in order to obtain the required period and clarity in the beating vibration. The results obtained from the analytical
method are compared with those obtained from finite element analysis(FEA)and the validity of the proposed method is
verified. The proposed method can be effectively used to predict the mode pair and control the beat property in bell­
type structures.
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1. Introduction

The circular ring model has been widely used for
the analysis of the axisymmetric cylindrical structure.
In this case, the circular ring is asymmetry because of
the local stiffuess or thickness deviation : this asym­
metry is significantly different from other axisym­
metric structures in terms of the vibration charac­
teristics. Due to slight asymmetry, a frequency and
mode pair appears and this causes a beat, which is a
very interesting vibration characteristic. For the
application cases, research was carried out on a bell­
type structure(kim et al., 1994; Yurn, 1984), tire
(Allaei et al., 1988) and gyro ring. Allei and Soedel
applied the receptance method to calculate the mode
pair of the circular ring with local masses and
springs(Kim et al., 1994; Allaei et al., 1998). Using
the Rayleigh-Ritz method, Fox analyzed the modal
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parameters of a circular ring with multiple point
masses and introduced the concept of an equivalent
imperfection mass. He applied the analysis to reduce
or eliminate the frequency split in a slightly asym­
metric ring(Fox et al., 1990; Rourke et al., 200 I).
Hong and Lee analyzed an asymmetric circular ring
and then obtained a precise solution considering the
local mass and stiffness deviations as a heavy side
step function(Hong and Lee, 1994). On the other
hand, Kim et al. have investigated the beat distri­
bution characteristics by using the impulse response
model of a light asymmetric ring(Kim et al., 2005 ;
Lee et al., 2002). There are many researches the­
oretically analyzing the mode characteristics of an
asymmetric circular ring; however, there are very few
researches on creating an equivalent circular ring,
which has the required mode characteristics and vice
versa. In this research, we suggest a method for
creating a circular ring with asymmetry that satisfies
the required beat condition for the purpose of
application to a bell-type structure. Asymmetry is
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We consider a circular ring with n imperfection
point masses that satisfy the mode characteristics,
OJnL,nH and If/n' and can transform Eqs. (1) and (2)
to Eqs. (3) and (4), respectively, by using standard
trigonometric identities.

t:q1l.,H2

=~'[-(l-+a;,-2:-)-'+2J;;;;'"~-{-(l+-a;,---'2-~:-~-"-l~-a;,--::2-)COS-2n(-~---I{/,-n)-l/ Mo-]

(2)
(n : mode number, m, : i-th point mass, i/J; :

position of i-th point mass, If/n: node of n-th mode,
an: ratio of radial displacement to tangential dis­
placement, Mo : mass ofperfect circular ring)

inevitably caused in casting or is designed inten­
tionally in a bell-type structure. As a result, the beat
phenomenon that repeats the strong and weak
vibrations appears and this is an important cha­
racteristic of the Korean bell sound. However, it is
difficult to generate a clear beat with a proper period.
In this research, we suggest a new analytical method
that consists of an asymmetric circular ring with the
required beat and mode pair characteristics. Fox
applied a simple equivalent ring model to eliminate
the beat. However, in a Korean bell, a clear beat with
a proper period is required. In order to apply Fox's
method for tuning the beat, we should improve upon
his theory and check in detail the position and
magnitude of the 2nd mass that is attached.

First, we prove theoretically that the mode cha­
racteristics of both the models vary equally when we
add a 2nd point mass to the original model and its
simple equivalent model. Based on this theory, we
expect an alterlation in the mode pair and natural
frequencies due to the attachment of the 2nd point
mass to the simple equivalent model whose mode
characteristics are known. Moreover, we suggest a
new method to determine the position of the optimal
2nd point mass for the required beat condition. We use
the impulse response model of a slightly asymmetric
circular ring in order to analyze the clarity of the beat
and verify the reliability by a comparison between the
theoretical and finite element analysis(FEA) results.

L .mi sin 2nljJ;
tan 2nlf/n = -=,,''----­L;m; cos 2nljJ;

L ». sin 2n(i/J; -If/Il) = 0

Lm;cos2n(i/J;-If/Il)=MAn,

2 2 2
1 = (OJIlL - OJ17H )(1+all)

/"'11 'J? ') ,

(OJ,~L + OJ,~H )(1 - a,~)

M=Mo+Lm;=i\./ +meq

(I)

(3)

(4)

3. Validity of the equivalent ring model

The simple equivalent circular ring model should
have the same mode characteristics as those of the
original ring; further, it should have the same

Therefore, we can obtain the simple equivalent
circular ring model with the same mode data as that
of the original ring if we attach the mass meq = MAil

. . J[
to the position i/Jeq = If/n + - .

2n

The simple equivalent model with an imperfection
point mass is obtained from the condition that the nth
mode satisfies the given mode data OJIlL,nH and If/n.
If we consider a point mass meq, the following Eqs.
are introduced from the Eqs. (3) and (4).

2. Theory for the equivalent ring model

We assume that the beat frequencies and mode
shapes of the circular ring are obtained from the
measurement in which the magnitude and position of
the imperfection masses are not known. In other
words, the natural frequency pair OJL,H' the phase of
the mode pair If/L.H and the total mass of the
circular ring 1'v1 are provided. We use Fox's model
since it is easy to obtain a simple equivalent ring
model with the same mode characteristics. Fox
proposed a theoretical model of a slightly asymmetric
ring with multiple point masses using the Rayleigh­
Ritz method. He derived the following Eqs. for the
natural frequencies and the node position of the
circumferential modes(Rurke et al., 2001). These Eqs.
imply that if we know the magnitude and location of
the imperfection masses, we can obtain the natural
frequencies and the node positions of the circular ring
with multiple point masses.

meq sin 2n(i/Jeq -If/Il) = 0 =>

meq cos2n(i/Jeq -If/Il) = MAil

J[

i/Jeq = If/Il+ 2n

=> meq = MAil

(5)

(6)
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By substituting Eq. (13) in Eq. (II), we obtain

Further, the combination ofEqs. (7) and (14) shows
that

Likewise, by equating Eqs. (15), (8) and (9), we
show that

(15)

(14)

meqcos2n¢eq = Lm;cos2n¢; =>

meq sin 2n¢eq = L misin 2n¢;

variation with the original ring in terms of the natural
frequency and mode shape in the case of structure
modifications. Here, we theoretically check whether
the mode characteristics of both the models change
equally when we add a new mass mnew to the

position ¢new in both the models. As an initial
asymmetric ring, we consider a circular ring with
multiple point masses satisfying Eqs. (1) and (2), and
we develop another circular ring model with a point
mass using Eqs. (5) and (6), which has the same
mode data as those of the initial model. If we add a

new mass m"f?>V to the position ¢"ew in both the
models, the anti-node of the L-mode I//n is de­
termined by using Eqs. (7) and (8).

L ». sin 2n¢; m sin 2nt;&,
tan 2nl// = i == eq eq (7)

n L;m;cos 2n¢; meq cos 2n¢eq

, L .m;sin 2n¢;+ m"ew sin 2n¢"ew
tan 2nl//n = I (8)

L;m;cos 2n¢i + m"ew cos 2n¢new

, meq sin 2n¢eq + mnewsin 2n¢new
tan 2nl//" = (9)

meq cos2n¢eq + mnewcos2n¢new

Here, the combination of the Eqs (4) and (6) gives
Eq. (10).

(10)

r "L .m;sin 4¢; + m"ew sin 4¢new
tan 41//1 == tan 41//1 = "" I

L.J;m;cos 4¢; + mnewcos 4¢new

= meq sin 4¢eq + mnewsin 4¢new

meq cos 4¢eq + mnewcos 4¢new

(16)
As a result, we prove that 1//; is equal to I//~.

Besides, the new natural frequencies OJ~L,nH and

OJ'~L nH are calculated as follows:

n

!vI = !vIo+Lm; == M* + mnew
;=1

1+
n

(I +a;,2) +I l11j[(l +a;,2)+(l_a;,2)cos2n(¢, -lj/,,)J
;=1

(17)

r4r.nH
2

=%n2
---------------

From Eq. (5), we know that ¢eq. is equal to 1//".
Multiplying cos2n¢eq with Eq. (10) gives

meqcos2n¢eq = cos2nl//n L m;cos2n(¢; -If/n)

==~Lm; [cos2n¢; +cos2n(¢; - 21//n)]

(II)
Further, multiplying sin2nl//n with Eq. (3) gives

sin2nl//n xLm;sin 2n(¢; -I//n)

=~Lm;[-cos2n¢; + cos2n(¢; - 21//n)] (12)

=0

As a result, Eq. (13) is obtained as follows.

(18)
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(25)
(20) Here, the radius of the circular ring R and the

thickness h are fixed and Eq. (26) is derived.

(24)

1. 2 1 2 •
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E 2hnd (n - an)2 + !Ja,;(l- nZ)Z
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Z "Z"
%nMO=%nM

I E (n-an)z + !Ja;'(l-nz)z

RZ p(l-vz) 1+ a;'

af,'I"nH
2

::=:(~L.nH2

and

-?1_(Mo+ Im; )(l+an2n-?-I-meq(l-a,,2)co,2n(!6<q -\II~)
aunMO aun MO

+ ~n<w [(1+a/)+(I-an2)Cos2n(~new-\II~)]

aun MO

(26)
If we substitute Eqs. (4) and (26) in Eqs. (24) and

(26), Eq. (27) is obtained.

(27)
In conclusion, we know that the simple equivalent

model, which has the same mode characteristics as

those of the initial model with multiple point masses

is founded to be unique and the variation in the

natural frequencies and mode shapes of both the

%L.nH
2

(19) I+a/

1 2 1 2 2 •
----,z(l+an )+---.zomeq[(I+an )'f(l-an )cos2n(!6eq-\IIn)]
%n %nM

+ ~~ew. [(l+a/)'f(l-a/)cos2n(!6new-V/:)]
%nM

1+an
2

(22)

L mi cos2n(¢>i -If/n)cos 2n(lf/n -If/~)

= meqcos2n(¢>eq -If/n)cos2n(lf/n -If/~)

Lmjcos2n(~j-If/~)

+ L mi cos 2n(~i - 21f/n + If/;,)

= meq cos2n(¢>eq -If/~)

+ meq cos 2n(¢>eq - 21f/n + If/;,)

L rnjsin2n(~j -If/n)sin2n(lf/n -If/~) = 0

l~ ,=2" LJmj[-cos2n(~j -If/n +If/n -If/n)

+ cos2n(¢>j -If/n -If/n + If/~)

I~ ,=2"LJmj[-cos2n(¢>j -If/n)

+ cos2n(¢>j - 2lf/n+ If/~) =0

:.L mjcos 2n(¢>j -If/~)

= L mjcos 2n(¢>j - 21f/n + If/~)

meq sin 2n(¢>eq -If/n)sin 2n(lf/n -If/;,) = 0

1 [ ,
= 2" -meq cos2n(¢>eq -If/n + If/n -If/n)

+ meq cos 2n(~eq -If/n -If/n + If/~)]

:. meq cos 2n(~eq -If/~)

= meq cos2n(~eq - 2lf/n+ If/~)

L mjcos 2n( ¢>i -If/n) = meq cos 2n(¢>eq -If/n) = MAn

(21)

, 2
co"L,nH

Eqs. (19) and (20) are derived from Eqs. (3) and (5)
before we add a new mass rnnew.

Likewise, Eqs. (21) and (22) are derived from Eqs.
(4) and (6).

If we substitute Eqs. (19) and (20) in Eq. (22), Eq.
(23) is obtained.

L mi cos2n(¢>j -If/~) = meq cos2n(¢>eq -If/~) (23)

Equating Eqs. (23), (17), and (18) shows that
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models coincide exactly, regardless ofthe number and
position of the masses of the initial model.

Table 1. Natural frequency of original ring and equivalent
rings.

1.57
)

7.57

14.49

~;o n ..3 mode ,,,,ir

1.51---..,..,-,

:"J n"3 mode pair

64.71

182.79

64.50

182.50

1.57,

n=2 64.57 64.64 14.49

n=2

n=3

n=3

M=1702.5 kg, p=8700kglm3, R=1012 01,

E=5.6e 10Pa, h=0.203 m, d=O.l5 m
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(b) n=2 equivalent ring model with a point mass

Original

n=3 equivalent
model

n=2 equivalent
model

Specification of

a'<isymmetric.-:nn:::;·"'4--"=---=r-:-:-::c=--::.;:=-:::.:-=--;:-:.::...:.:-'-----­
Mode parameter

(a) Original ring model with 5-masses

n=2 64.57 64.64 14.49

(c) n=3 equivalent ring model with a point mass

Fig. 1. Original ring and equivalent models.

In Fig. 2, we compare the frequency pair according
expected, as the ratio of illeq to M increase, a
difference between the frequencies occurs and the
difference in the frequency pair(beat frequency)
increases. The difference in the frequencies in the
comparison between the FEA results and the the­
oretical results, is because the ratio of the thickness to

In Table I, (tJo is the natural frequency of the
symmetric ring without point masses and it does not
show a mode split. As theoretically verified, only in
the n=2 mode, the frequency and phase of the n=2
equivalent model are exactly the same as those of the
original ring with five point masses: an identical
situation is observed in the n=3 equivalent model as
shown in the table.
Figure I shows the mode condition of the n=2 and
n=3 modes between the original model and the
equivalent model. The mode pairs of both the models
coincide, as confirmed theoretically. In Fig. 1, the
anti-node of the L-mode becomes the node of the H­
mode; therefore, the mode shapes can be expressed
by only the anti-node ofthe L-mode. When we compare
the n=2 equivalent model with the original model, the
mode shapes of n=2 mode coincide but to the ratio of
meq to M using the FEA results. As expec- ted those
of the n=3 mode do not coincide. Likewise, in the
case of the n=3 equivalent model, the mode shapes of
the n=3 mode only coincide with each other. In other
words, the equivalent model with a point mass follows
only a target mode in the mode characteristics.

4. Analysis of the equivalent ring model

Table 1 shows the specifications ofthe circular ring,
which are determined to have the same frequency of
the n=2 mode as that of the famous King Seongdeok
Divine Bell(Kim et al., 2005). With the symmetric
ring, we generate asymmetry using five point masses;
mj=[3, 1,4,6, 4]kg, cI>i=[O, 35, 125,260, 300r. As a
result, the original asymmetric ring model is created
and has mode data as given in Table 1. We assume we
do not know the magnitude and position of the
imperfection masses; we start tuning simulation only
with the original modal data. From the mode cha­
racteristics, we can obtain the n=2 and n=3 simple
equivalent models with a point mass that satisfies the
mode characteristics for both the n=2 and n=3 modes
using Eqs. (5) and (6).

Modal data of the original model : M=1702.5 kg,
C0.L = 64.57 Hz, C0.H = 64.64 Hz, th. = 14.49° ,
OYJL = 182.25 Hz, OYJH = 183.05Hz, th == 7.57°

n=2 equivalent model: ml=[33285]kg, <1>1=[14.49f
n=3 equivalent model: m,=[9.4143]kg, <I>,=[7.57f
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(a) Frequency vs. the location of2"d point mass

become equal. If we attach the 2nd point mass to a
location that is shifted 90° from 54.59', the same
effects are observed. These results agree with those of
the beat trimming by Fox. On the contrary, if we
attach the 2nd point mass to the same position as that
of the 1$I mass or if the location is shifted 90° from
that position, the effect of asymmetry and the
difference in the frequency pair reaches the maximum.

Figure 3(b) shows the anti-node of the L-mode
according to the position of the 2nd point mass. The
positions of the mode and anti-node are very
important in tuning the beat response of the asym­
metric circular ring. The position of the n=2 anti-node
has a period and the variation of the n=2 anti-node
position by the 2nd point mass also has a period. The
discontinuity in the 4>2nd = 59.49° position means that
the mode separation does not occur due to the
cancellation effect of the 2nd point mass and this is
periodically generated. The theoretical results of Figs.
3(a) and (b) are in complete agreement with the FEA
results.

Figure 4 shows the natural frequency and the node
position according to the magnitude and position of
the 2ndpoint mass. The final objective of our research
is to control the beat(inverse of the difference
between the low and high frequencies) and node
position based on our intent.

Figure 4(a) represents the variation of the beat due
to the magnitude of the 2nd point mass, which is 1/4,
1/2, 1, 2 and 4 times the initial mass. As stated
previously, when we add a2nd mass to the <I>2nd=
59.49° position, the beat period becomes maximum
irrespective of the magnitude of the 2nd mass. This
means that the amount of asymmetry reaches the
minimum when we attach a 2ndmass to a position that
is shifted 45° from the l" mass. In particular, when
the magnitude of the 2ndpoint mass is the same as that
of the 1st mass, the beat period becomes infinite and
the beat is eliminated. The beat period increases as the
2ndpoint mass approaches to the l" mass in both case
that 2nd point mass is bigger or less than the 1st mass.
The reason is that the attachment of the 2ndpoint mass
produces a cancellation effect of the asymmetry.
However, the asymmetry reaches the maximum while
the beat period reaches the minimum when we add a
2nd point mass to the <I>2nd= 14.49° position because
this position is the same as that of the 1,1 mass in the
initial equivalent model. As the 2nd point mass in­
creases, the amount of asymmetry increases and the
beat period decreases. These tendency repeat within

609

o 2L AtllinoJe(FEAI)

- '2LAntinodet the01:V)

the radius of the ring is comparatively large. However,
we focus on the changing tendency of the frequency
and mode pairs, and the characteristics of both the
models are very similar.

Figure 3(a) shows the magnitude of the frequency
pair according to the location of the 2nd point mass
which has the same magnitude(IIleq!M=0.002) as that
of the 1st imperfection point mass of the equivalent
model. An imperfection point mass of the equivalent
model is located at the position corresponding to
14.49° as shown in Fig. 1(b). The initial asymmetry
can increase or decrease according to the position of
the 2nd point mass. Ifwe attach the 2ndpoint mass to a
location that is shifted 45°(4)2nd = 59.49°) from the 1st

point mass, the effect of asymmetry becomes zero
and the frequencies of the L-mode and H-mode

Fig. 2. Frequency vs. the ratio of imperfection mass to total
mass

;;
- (d.,H(/J>A''1')~

5- &l5
-«}!l.(I~)~,

(b) Anti-node position ofn=2 L-mode vs. point mass position

Fig. 3. Change of mode data by a point mass attachment.



(b) Node position vs. 2nd mass position

Fig. 4. Change of mode pair by the attachment of 2nd point
mass.

[cosn(e* - rh)cosn(e - tPL)sin(OJnLt)

+ cosn(e* - tPH )cosn(e - tPH )sin(OJnHt)]

(28)
«(no : average value of damping, OJnH : natural
frequency of a high mode, OJnL : natural frequency
of a low mode, e* : position of the striking point,
tPL : position of the anti-node of low mode, tPH :

position of the anti-node of high mode)

5. Beat tnnning for clearness and proper period

In Korean bell, a clear beat with a proper period is
required. The clarity of the beat can be analyzed by
the following impulse response model of a slightly
asymmetric circular ring.(Kim et al., 2005)

node position and fmd an effective method for the
structure modification in order to satisfy the required
mode characteristics from a simple equivalent model.
This equivalent model can be applied to obtain the
alteration of the mode characteristics for higher
modes as well(n=3, 4,... ).

The striking point is fixed at the design stage in a
bell-type structure. From Eq. (28), the low and high
mode pairs should be equally excited for a clear beat.
Therefore, each anti-node of the mode pairs should be
positioned at an equal distance from the striking point.
This requires the anti-node of the n=2 L-mode to be
positioned 22.5" from the striking point. By subs­
tituting th. == 22.5 ° in Eq. (2), we can obtain the
condition of the 2nd mass m2 and position th., i.e.,
it is determined how much and what position the 2nd

mass should be attached to in order to make the anti­
node of the L-mode shift to 22.5". The solid line in
Fig. 5(a) represents this condition. Positive mass
refers to the attachment of the mass and negative
mass refers to the removal of the mass. An infinite
amount of the 2nd point mass is required at 22.5" or
67.5" for the L-mode anti-node to be located exactly
at 22.5". At the 45" position, the same result can be
obtained with minimum 2nd mass attachment. There­
fore, for the present asymmetric ring, a 45° position
(or its 90° periodic positions) will be the optimal
position with respect to the clarity of the beat.
However, the optimal position will vary according to
the initial asymmetry of the original ring. Both the

.•..•••. m: = 4m1

I
_.- ""="4""

I
_.- m2=2"~

......... m, = 1m l

....... "'1 = 2,,~

r;
j \
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acircle of 90°. If the amount of initial asymmetry is
different, the maximum and minimum points on the
curved line change; however, the configuration of the
n=2 mode curved lines is identical. Applying the
same analytical method, we can draw n=3 mode
curved lines and expect a variation of the beat
frequencies. Figure 4(b) shows the location of the L­
mode anti-node according to that of the attached 2nd

mass. When we add a 2nd point mass to the position
corresponding 14.49° which is the same as that of the
Ist mass, or the position that is shifted 90° from 14.49°,
the anti-node of the L-mode(the node of the H-mode)
does not shift from the initial location, i.e., 14.49°.
The attachment of the 2nd mass to these positions
causes an increase in the mass effect of the L-mode
and maintains the phase of the L-mode. On the other
hand, a rapid transition appears at the position
corresponding 59.49°, which is a 90° shift from the
position of the 1st mass, and these characteristics
repeat within a circle of 90°. It is very important to
consider these points when we attempt to move the
nodal line for generating a clear beat. In this manner,
we expect a variation of the natural frequencies and
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Fig. 5. 2nd mass size and beat period vs. 2nd mass

8.5 kg(mimj=2.5, i.e., mlM=O.005) should be attached
at 25.45", as shown in Fig. 5(b). In this situation, the
L-mode anti-node is located at -22.5" as shown in Fig.
5(b). Interestingly, a higher mass of 14 kg(mlM=
0.0082) is required at 65.7 degree for the same
purpose.

Table 2 shows the beat tuning result. As expected,
successful beat tuning is confirmed in the n=2 mode,
i.e., the beat period becomes 4 s, and the L-mode anti­
node is located at 22.5". However, the result shows
that the n=3 mode does not contribute to the beat
tuning: this means that additional beat tuning is
necessary for the n=3 mode.

In the proposed method, beat tuning is possible by
using 2nd point mass. In reality it is more frequent to
give cuts and modify the structure than to add masses.
The cut simultaneously diminishes the mass and
stiffness, and Hong(l990) showed that the stiffness
reduction effect is considerably stronger than the
mass reduction effect. Since the stiffness effect is
much stronger than the mass effect, the anti-node of
the L-mode passes the location of the cut; this result is
the same as that obtained in the case of an equivalent
mass located on the anti-node of the L-mode. This
demonstrated possibility to some extent that the
abovementioned theoretical analysis can be applied to
the beat tuning method using the cut.

·15

80 90
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Fig. 6. L-mode anti-node position vs. 2nd mass position.
6. Conclusions

An equivalent ring model with a point mass was
created, which has the same mode characteristics as
that of a slightly asymmetric arbitrary circular ring.
We theoretically proved that this equivalent ring has
exactly the same natural frequencies and node
positions for a specific mode pair and the variation of
the mode characteristics by attaching a 2nd point mass
coincides between both the models. An equivalent
ring model is determined for each mode. We can
intentionally control the location of the nodal line and
the beat period of the mode pair. The theoretical
results were compared with the FEA results and the
reliability was verified. On the basis of the suggested
analytical method, we can obtain the position of the
mass that satisfies the required mode characteristics
with a least 2nd point mass. In conclusion, the
proposed beat tuning method using the equivalent
ring model can be applied to effectively tune the beat
characteristics of a bell-type structure.

Description TM=1711 kg, p=8700 kg/rrr', R=L012m.
of the £=5.6elO Pa h=0.203 In, d=0.15 In,

circular ring m;=[3.3285, 8.5Jkg, <1>;=[14.49, 25.45J

Mode I
Beat

cv] ("2 V' period

N=2 64.3206 64.5708 22.5 4

N=3 181.7566 182.6272 -7.4 U5

Table 2. Description of the considered circular ring after
tuning.

period and clarity are important factors in the beat
vibration. The dotted line in Fig. 5(a) represents the
beat period(T: inverse of the beat frequency). This
dotted line is obtained by substituting the values of
m2 on the solid line in Eq. (2). In the given ring
model, the initial beat period of the n=2 mode was
13.3 s, which seems to be very high. As an appli­
cation, we attempt to shorten the period to 4 s, to hold
a clear beat. During this period, a 2nd point mass of
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